
Formal verification
of smart contracts

1

Table of contents

Introduction . 3

Definition of the main concepts . 5

Motivations . 8

Some syntactical elements of the Coq language . 11

Proof creation using Mi-Cho-Coq . 14

Execution of a simple proof using Coq software . 16

Limitations . 20

Conclusion . 22

2

Introduction

3

Introduction

Introduction
The Tezos blockchain was designed to ensure the required security and compliance of the code, particularly for
high-value use cases such as the issue and management of Security Tokens1 or stablecoins,2 or even for the
blocking of funds in a context such as liquidity pools.3

Michelson, the native smart contract language of the Tezos blockchain, facilitates formal verification by pro-
viding guarantees; this is a methodology currently used in critical environments such as the aerospace, nuclear
and semi-conductor industries. This methodology consists in defining the specifications of a computer code
and in proving that its execution indeed does what it was designed to do.
Any contract deployed on a public blockchain is almost impossible to rewrite or remove from the history. Con-
sequently, for certain applications, unit tests are insufficient for ensuring that they have the desired operation. It
is therefore essential to prove the correct operation of these contracts via formal verification.
In this document, we shall explain what formal verification of smart contracts is and illustrate it with Mi-Cho-Coq,
the formal verification tool developed by Nomadic Labs.

1A security token is the representation of a financial security (for example, a company share or real estate asset) by a token.
2A stablecoin is a digital asset class the aim of which is to offer price stability compared to another asset, often a fiat currency (euro, dollar, etc.)

such as, for example, the LUGH project. Different price stabilization methods are used depending on the project, such as sequestration or algorithmic
stabilization.

3A Liquidity Pool (LP) is a smart contract in which tokens are blocked. A liquidity provider sends its funds to the pool in order to provide liquidity.
From that point, it may no longer transfer its funds. Nevertheless, it receives LP tokens, which represent its part of the pool. It may, when it decides to
do so, recover its funds. It also receives the exchange fees paid by the service users. 4

https://fr.lugh.io/

Definition of the main
concepts

5

Definition of the main concepts

Definition of the main concepts 1/2
Smart Contract : Computer program that is deployed on the blockchain. On Tezos, these pro-

grams are written or (when they are written in a language other than Michel-
son) compiled in a language proprietary to Tezos: Michelson. This language
was devised to facilitate formal verification.

Specifications of a code: Description of tasks that a computer code has to perform in a particular envi-
ronment. They bring together all requirements to be met for this code, such
as its behavior and the results expected when it is executed.

Unit tests : Process that, by a succession of tests, verifies the correct operation of a com-
puter program. It compares the specification of a code with its performance,
for a certain amount of data provided as input.

6

Definition of the main concepts

Definition of the main concepts 2/2
Formal logic: Deductive mathematical verification that calls on so-called mathematical log-

ical reasoning, which uses a vocabulary and particular symbols as well as log-
ical connectors.

Coq : Formal proof assistant that provides a formal language for writing mathemat-
ical definitions, executable algorithms and theorems with a semi-interactive
environment for developing proof verification. A prominent tool that is well
established in code verification, particularly in critical areas.

Mi-Cho-Coq : Formal verification library for smart contracts written in Michelson. It enables
a Michelson script to be modeled in a mathematical model on which the rea-
soning that establishes its compliance with a specification is possible.

7

https://coq.inria.fr/

Motivations

8

Motivations

Motivations 1/2
During the design of smart contracts, it is important to ensure that they are doing what they were designed to
do.
Owing to the data that they handle and because, once deployed, you can no longer simply change the code, it
is necessary to have guarantees for the security of the code: in other words, that its execution behaves as had
been predicted by the specifications.
In fact, in certain areas where there is a lowmargin for error, a code that reacts unpredictably may be very costly
and incur heavy human and financial consequences.
Ensuring that a smart contract is behaving correctly is not a trivial task. A standard good practice is to carry out
unit tests. In practice, such tests only cover a finite number of cases. Consequently, how do we ensure that a
program matches its specification and is mathematically correct?
This is where formal verification comes in. All methods and tools that address this issue constitute formal meth-
ods. It involves methods based on a mathematical representation of a program that allow reasoning about it.
They are ranked according to the level of guarantees that they provide: from bug detection (tests, PBT testing,
model-checking, etc.) to code correction and even the generation of correct code by construction.

9

Motivations

Motivations 2/2
The idea then is to find amean of translating these smart contracts into a language thatwill be used in a proof
assistant (this is where Coq comes in). Before their deployment, certain smart contracts may be considered as
critical, requiring a detailed audit. In this case, in addition to unit tests, they can be formally proven, using the
Coq proof assistant.
It should be noted that there are other tools for verifying smart contracts on the Tezos blockchain. The main
ones include:

– Why3: a program verification platform that consists in generating a series of proof obligations for each
property of the specification. This tool is particularly used by the Archetype smart contract language.

– K-Michelson: Michelson interpreter developed by Runtime Verification, which develops a generic
language specification tool, K-framework.

10

http://why3.lri.fr/
https://archetype-lang.org/
https://runtimeverification.com/blog/formal-verification-framework-for-michelson/
https://kframework.org/

Some syntactical elements
of the Coq language

11

Some syntactical elements of the Coq language

Some syntactical elements of the Coq language 1/2
Le langage Coq :

– Boolean type definition:

Inductive bool : Type :=
| true
| false.

– Definition of a function that returns the denial of a Boolean (Fixpoint keyword to define a recursive function):

Definition negb (b:bool) : bool :=
match b with
| true => false
| false => true
end.

12

Some syntactical elements of the Coq language

A few syntactical elements of the Coq language 2/2
Here is an example of proof that may be implemented:

Example test_orb1: (orb true false) = true.
Proof.
simpl. (* ===> true = true *)
reflexivity. (* ===> no more subgoals *)
Qed1 .

In the example above, it involves showing that true or false ⇒ false. The first line matches the one that we want
to demonstrate. The lines between the Proof and Qed keywords constitute the proof.

All words between Proof andQed are called tactics. These are functions that allow us to make our demonstra-
tion step by step.

All tactics are referenced at:
https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacv.destruct-eqn

1QED = quod erat demonstrandum; what was to be shown (in Latin). 13

https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacv.destruct-eqn

Proof creation using
Mi-Cho-Coq

14

Proof creation using Mi-Cho-Coq

Creation of proofs using Mi-Cho-Coq
As Coq is proof software that has its own syntax; the difficulty has been in finding away to translate theMichelson
code into Coq.
Mi-Cho-Coq is the library that allows you to do this. When you wish to prove a smart contract written in Michel-
son, you must use this library and import the code that you wish to formally prove.
The syntax to be used at the start of the file containing the proof is as follows:

Require Import Michocoq.macros.
Import syntax.
Require Import Michocoq.semantics.
Require Import Michocoq.util.
Import error.

For a more technical understanding of the operation of Mi-Cho-Coq, this tutorial can be viewed: https://
gitlab.com/nomadic-labs/mi-cho-coq/

15

https://gitlab.com/nomadic-labs/mi-cho-coq/
https://gitlab.com/nomadic-labs/mi-cho-coq/

Execution of a simple proof
using Coq software

16

Execution of a simple proof using Coq software

Proof execution with the Coq software 1/3
We shall execute the proof of: Example test_orb2 (Example keyword below) using the Coq proof assistant.

17

Execution of a simple proof using Coq software

Proof execution with the Coq software 2/3

18

Execution of a simple proof using Coq software

Proof execution with the Coq software 3/3

End of proof.

19

Limitations

20

Limitations

Limitations
Here are the main limitations of the formal logic.

Limitation of a general nature:

– It is difficult to formally define the expected behavior of a contract. However, a proof depends on the
quality of the formal definitions associated with it. Consequently, a poorly defined contract may, even if it
has been formally proven, have undesirable behaviors.

Limitations specific to Mi-Cho-Coq:

– A formal proof of a smart contract does not take account of problems related to its Gas consumption.1 .
Consequently, an evaluation dedicated to the cost of a smart contract is relevant to complement the
formal logic tests.

– Mi-Cho-Coq allows you to show a contract’s calls but not on a series of several independent calls.
However, other tools allow you to do this; this is, for example, the case of Concert.2

1Unit of measurement of the cost of executing a smart contract in time and resources. A price in will correspond to a quantity of Gas.
2Certification tool for smart contracts in Coq. 21

https://github.com/AU-COBRA/ConCert

Conclusion

22

Conclusion

Conclusion
Mi-Cho-Coq is a tool that allows you to obtain certain guaranteeswith regard to the execution of a smart contract
deployed on the Tezos blockchain. In fact, when it involves creating and deploying smart contracts, it is essential
to verify that the code meets the specification that characterizes it.
Nowadays, many smart contracts deployed with prior audit and unit tests have shown serious flaws, particularly
in the context of DeFi1 (Decentralized Finance), which increases the risks of financial loss if a flaw is detected.
During the creation of smart contracts, as well as conducting unit tests, formally verifying the program created
using proof software helps to reduce considerably the possibility of vulnerabilities and undesirable behaviors.
The Tezos blockchain and its code were designed and developed in order to obtain a high level of code security
guarantees, either through technological choices or its architecture. In particular, its native Michelson smart
contract language facilitates formal verification. This is why it is generally easier to formally prove contracts on
the Tezos blockchain, compared to other blockchains whose smart contract languages do not facilitate formal
verification.
Mi-Cho-Coq has in particular helped to formally verify the standard of FA1.2 tokens on Tezos, Dexter 2 (version 2
of the decentralized Dexter exchange platform), Liquidity Baking (a single-asset decentralized exchange offered
by the Granada amendment), or even the multisignature contract used by the Tezos client.

1All financial applications based on smart contracts, some of these application cases being similar to so-called traditional finance such as loans. 23

https://gitlab.com/tzip/tzip/-/blob/master/proposals/tzip-7/tzip-7.md
https://gitlab.com/tezos/tezos/-/blob/master/tests_python/contracts_010/mini_scenarios/generic_multisig.tz

Let’s keep the
conversation going

for more tezos informations:
https://tezos.com
https://developers.tezos.com

24

https://tezos.com
https://developers.tezos.com

	Introduction
	Definition of the main concepts
	Motivations
	Some syntactical elements of the Coq language
	Proof creation using Mi-Cho-Coq
	Execution of a simple proof using Coq software
	Limitations
	Conclusion

